Papers
Topics
Authors
Recent
2000 character limit reached

When Single Event Upset Meets Deep Neural Networks: Observations, Explorations, and Remedies

Published 10 Sep 2019 in cs.LG, cs.CR, and stat.ML | (1909.04697v1)

Abstract: Deep Neural Network has proved its potential in various perception tasks and hence become an appealing option for interpretation and data processing in security sensitive systems. However, security-sensitive systems demand not only high perception performance, but also design robustness under various circumstances. Unlike prior works that study network robustness from software level, we investigate from hardware perspective about the impact of Single Event Upset (SEU) induced parameter perturbation (SIPP) on neural networks. We systematically define the fault models of SEU and then provide the definition of sensitivity to SIPP as the robustness measure for the network. We are then able to analytically explore the weakness of a network and summarize the key findings for the impact of SIPP on different types of bits in a floating point parameter, layer-wise robustness within the same network and impact of network depth. Based on those findings, we propose two remedy solutions to protect DNNs from SIPPs, which can mitigate accuracy degradation from 28% to 0.27% for ResNet with merely 0.24-bit SRAM area overhead per parameter.

Citations (45)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.