Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analysis of Power-Oriented Fault Injection Attacks on Spiking Neural Networks (2204.04768v1)

Published 10 Apr 2022 in cs.AI and cs.NE

Abstract: Spiking Neural Networks (SNN) are quickly gaining traction as a viable alternative to Deep Neural Networks (DNN). In comparison to DNNs, SNNs are more computationally powerful and provide superior energy efficiency. SNNs, while exciting at first appearance, contain security-sensitive assets (e.g., neuron threshold voltage) and vulnerabilities (e.g., sensitivity of classification accuracy to neuron threshold voltage change) that adversaries can exploit. We investigate global fault injection attacks by employing external power supplies and laser-induced local power glitches to corrupt crucial training parameters such as spike amplitude and neuron's membrane threshold potential on SNNs developed using common analog neurons. We also evaluate the impact of power-based attacks on individual SNN layers for 0% (i.e., no attack) to 100% (i.e., whole layer under attack). We investigate the impact of the attacks on digit classification tasks and find that in the worst-case scenario, classification accuracy is reduced by 85.65%. We also propose defenses e.g., a robust current driver design that is immune to power-oriented attacks, improved circuit sizing of neuron components to reduce/recover the adversarial accuracy degradation at the cost of negligible area and 25% power overhead. We also present a dummy neuron-based voltage fault injection detection system with 1% power and area overhead.

Citations (5)

Summary

We haven't generated a summary for this paper yet.