Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 78 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Data-driven simulation for general purpose multibody dynamics using deep neural networks (1909.02391v1)

Published 2 Sep 2019 in cs.LG, eess.SP, and stat.ML

Abstract: In this paper, a machine learning-based simulation framework of general-purpose multibody dynamics is introduced. The aim of the framework is to generate a well-trained meta-model of multibody dynamics (MBD) systems. To this end, deep neural network (DNN) is employed to the framework so as to construct data-based meta-model representing multibody systems. Constructing well-defined training data set with time variable is essential to get accurate and reliable motion data such as displacement, velocity, acceleration, and forces. As a result of the introduced approach, the meta-model provides motion estimation of system dynamics without solving the analytical equations of motion. The performance of the proposed DNN meta-modeling was evaluated to represent several MBD systems.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.