Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

MBD-NODE: Physics-informed data-driven modeling and simulation of constrained multibody systems (2407.08664v1)

Published 11 Jul 2024 in cs.CE, cs.SY, and eess.SY

Abstract: We describe a framework that can integrate prior physical information, e.g., the presence of kinematic constraints, to support data-driven simulation in multi-body dynamics. Unlike other approaches, e.g., Fully-connected Neural Network (FCNN) or Recurrent Neural Network (RNN)-based methods that are used to model the system states directly, the proposed approach embraces a Neural Ordinary Differential Equation (NODE) paradigm that models the derivatives of the system states. A central part of the proposed methodology is its capacity to learn the multibody system dynamics from prior physical knowledge and constraints combined with data inputs. This learning process is facilitated by a constrained optimization approach, which ensures that physical laws and system constraints are accounted for in the simulation process. The models, data, and code for this work are publicly available as open source at https://github.com/uwsbel/sbel-reproducibility/tree/master/2024/MNODE-code.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.