Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
164 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Aspect Detection using Word and Char Embeddings with (Bi)LSTM and CRF (1909.01276v1)

Published 3 Sep 2019 in cs.CL

Abstract: We proposed a~new accurate aspect extraction method that makes use of both word and character-based embeddings. We have conducted experiments of various models of aspect extraction using LSTM and BiLSTM including CRF enhancement on five different pre-trained word embeddings extended with character embeddings. The results revealed that BiLSTM outperforms regular LSTM, but also word embedding coverage in train and test sets profoundly impacted aspect detection performance. Moreover, the additional CRF layer consistently improves the results across different models and text embeddings. Summing up, we obtained state-of-the-art F-score results for SemEval Restaurants (85%) and Laptops (80%).

Citations (19)

Summary

We haven't generated a summary for this paper yet.