Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

White-Box Evaluation of Fingerprint Matchers: Robustness to Minutiae Perturbations (1909.00799v4)

Published 2 Sep 2019 in cs.CV

Abstract: Prevailing evaluations of fingerprint recognition systems have been performed as end-to-end black-box tests of fingerprint identification or authentication accuracy. However, performance of the end-to-end system is subject to errors arising in any of its constituent modules, including: fingerprint scanning, preprocessing, feature extraction, and matching. Conversely, white-box evaluations provide a more granular evaluation by studying the individual sub-components of a system. While a few studies have conducted stand-alone evaluations of the fingerprint reader and feature extraction modules of fingerprint recognition systems, little work has been devoted towards white-box evaluations of the fingerprint matching module. We report results of a controlled, white-box evaluation of one open-source and two commercial-off-the-shelf (COTS) minutiae-based matchers in terms of their robustness against controlled perturbations (random noise and non-linear distortions) introduced into the input minutiae feature sets. Our white-box evaluations reveal that the performance of fingerprint minutiae matchers are more susceptible to non-linear distortion and missing minutiae than spurious minutiae and small positional displacements of the minutiae locations.

Citations (5)

Summary

We haven't generated a summary for this paper yet.