Papers
Topics
Authors
Recent
2000 character limit reached

Targeted Example Generation for Compilation Errors (1909.00769v2)

Published 2 Sep 2019 in cs.SE and cs.AI

Abstract: We present TEGCER, an automated feedback tool for novice programmers. TEGCER uses supervised classification to match compilation errors in new code submissions with relevant pre-existing errors, submitted by other students before. The dense neural network used to perform this classification task is trained on 15000+ error-repair code examples. The proposed model yields a test set classification Pred@3 accuracy of 97.7% across 212 error category labels. Using this model as its base, TEGCER presents students with the closest relevant examples of solutions for their specific error on demand.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.