Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Context-aware Neural Machine Translation with Target-side Context (1909.00531v1)

Published 2 Sep 2019 in cs.CL

Abstract: In recent years, several studies on neural machine translation (NMT) have attempted to use document-level context by using a multi-encoder and two attention mechanisms to read the current and previous sentences to incorporate the context of the previous sentences. These studies concluded that the target-side context is less useful than the source-side context. However, we considered that the reason why the target-side context is less useful lies in the architecture used to model these contexts. Therefore, in this study, we investigate how the target-side context can improve context-aware neural machine translation. We propose a weight sharing method wherein NMT saves decoder states and calculates an attention vector using the saved states when translating a current sentence. Our experiments show that the target-side context is also useful if we plug it into NMT as the decoder state when translating a previous sentence.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Hayahide Yamagishi (4 papers)
  2. Mamoru Komachi (40 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.