A Decentralized Primal-dual Method for Constrained Minimization of a Strongly Convex Function
Abstract: We propose decentralized primal-dual methods for cooperative multi-agent consensus optimization problems over both static and time-varying communication networks, where only local communications are allowed. The objective is to minimize the sum of agent-specific convex functions over conic constraint sets defined by agent-specific nonlinear functions; hence, the optimal consensus decision should lie in the intersection of these private sets. Under the strong convexity assumption, we provide convergence rates for sub-optimality, infeasibility, and consensus violation in terms of the number of communications required; examine the effect of underlying network topology on the convergence rates.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.