Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Communication Efficient Curvature Aided Primal-dual Algorithms for Decentralized Optimization (2204.06380v2)

Published 13 Apr 2022 in math.OC

Abstract: This paper presents a family of algorithms for decentralized convex composite problems. We consider the setting of a network of agents that cooperatively minimize a global objective function composed of a sum of local functions plus a regularizer. Through the use of intermediate consensus variables, we remove the need for inner communication loops between agents when computing curvature-guided updates. A general scheme is presented which unifies the analysis for a plethora of computing choices, including gradient descent, Newton updates, and BFGS updates. Our analysis establishes sublinear convergence rates under convex objective functions with Lipschitz continuous gradients, as well as linear convergence rates when the local functions are further assumed to be strongly convex. Moreover, we explicitly characterize the acceleration due to curvature information. Last but not the least, we present an asynchronous implementation for the proposed algorithms, which removes the need for a central clock, with linear convergence rates established in expectation under strongly convex objectives. We ascertain the effectiveness of the proposed methods with numerical experiments on benchmark datasets.

Summary

We haven't generated a summary for this paper yet.