Papers
Topics
Authors
Recent
2000 character limit reached

DynGraph2Seq: Dynamic-Graph-to-Sequence Interpretable Learning for Health Stage Prediction in Online Health Forums

Published 22 Aug 2019 in cs.LG and stat.ML | (1908.08497v1)

Abstract: Online health communities such as the online breast cancer forum enable patients (i.e., users) to interact and help each other within various subforums, which are subsections of the main forum devoted to specific health topics. The changing nature of the users' activities in different subforums can be strong indicators of their health status changes. This additional information could allow health-care organizations to respond promptly and provide additional help for the patient. However, modeling complex transitions of an individual user's activities among different subforums over time and learning how these correspond to his/her health stage are extremely challenging. In this paper, we first formulate the transition of user activities as a dynamic graph with multi-attributed nodes, then formalize the health stage inference task as a dynamic graph-to-sequence learning problem, and hence propose a novel dynamic graph-to-sequence neural networks architecture (DynGraph2Seq) to address all the challenges. Our proposed DynGraph2Seq model consists of a novel dynamic graph encoder and an interpretable sequence decoder that learn the mapping between a sequence of time-evolving user activity graphs and a sequence of target health stages. We go on to propose dynamic graph hierarchical attention mechanisms to facilitate the necessary multi-level interpretability. A comprehensive experimental analysis of its use for a health stage prediction task demonstrates both the effectiveness and the interpretability of the proposed models.

Citations (20)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.