Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamic Virtual Graph Significance Networks for Predicting Influenza (2102.08122v1)

Published 16 Feb 2021 in cs.AI and cs.SI

Abstract: Graph-structured data and their related algorithms have attracted significant attention in many fields, such as influenza prediction in public health. However, the variable influenza seasonality, occasional pandemics, and domain knowledge pose great challenges to construct an appropriate graph, which could impair the strength of the current popular graph-based algorithms to perform data analysis. In this study, we develop a novel method, Dynamic Virtual Graph Significance Networks (DVGSN), which can supervisedly and dynamically learn from similar "infection situations" in historical timepoints. Representation learning on the dynamic virtual graph can tackle the varied seasonality and pandemics, and therefore improve the performance. The extensive experiments on real-world influenza data demonstrate that DVGSN significantly outperforms the current state-of-the-art methods. To the best of our knowledge, this is the first attempt to supervisedly learn a dynamic virtual graph for time-series prediction tasks. Moreover, the proposed method needs less domain knowledge to build a graph in advance and has rich interpretability, which makes the method more acceptable in the fields of public health, life sciences, and so on.

Summary

We haven't generated a summary for this paper yet.