Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Existence and multiplicity results for fractional $p$-Kirchhoff equation with sign changing nonlinearities (1502.06316v2)

Published 23 Feb 2015 in math.AP

Abstract: In this paper, we show the existence and multiplicity of nontrivial, non-negative solutions of the fractional $p$-Kirchhoff problem \begin{equation*} \begin{array}{rllll} M\left(\displaystyle\int_{\mathbb{R}{2n}}\frac{|u(x)-u(y)|p}{\left|x-y\right|{n+ps}}dx\,dy\right)(-\Delta){s}_p u &=\lambda f(x)|u|{q-2}u+ g(x)\left|u\right|{r-2}u\, \text{in} \Omega,\ u&=0 \;\mbox{in} \mathbb{R}{n}\setminus \Omega, \end{array} \end{equation*} where $(-\Delta){s}_p$ is the fractional $p$-Laplace operator, $\Omega$ is a bounded domain in $\mathbb{R}n$ with smooth boundary, $f \in L{\frac{r}{r-q}}(\Omega)$ and $g\in L\infty(\Omega)$ are sign changing, $M$ is continuous function, $ps<n<2ps$ and $1<q<p<r\leq p_s*=\frac{np}{n-ps}$.

Summary

We haven't generated a summary for this paper yet.