2000 character limit reached
A multiplicity result for a fractional Kirchhoff equation in $\mathbb{R}^{N}$ with a general nonlinearity (1606.05845v2)
Published 19 Jun 2016 in math.AP
Abstract: In this paper we deal with the following fractional Kirchhoff equation \begin{equation*} \left(p+q(1-s) \iint_{\mathbb{R}{2N}} \frac{|u(x)- u(y)|{2}}{|x-y|{N+2s}} \, dx\,dy \right)(-\Delta){s}u = g(u) \mbox{ in } \mathbb{R}{N}, \end{equation*} where $s\in (0,1)$, $N\geq 2$, $p>0$, $q$ is a small positive parameter and $g: \mathbb{R}\rightarrow \mathbb{R}$ is an odd function satisfying Berestycki-Lions type assumptions. By using minimax arguments, we establish a multiplicity result for the above equation, provided that $q$ is sufficiently small.