Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 38 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 420 tok/s Pro
Claude Sonnet 4.5 30 tok/s Pro
2000 character limit reached

Hebbian Graph Embeddings (1908.08037v4)

Published 21 Aug 2019 in cs.LG, cs.IR, and stat.ML

Abstract: Representation learning has recently been successfully used to create vector representations of entities in language learning, recommender systems and in similarity learning. Graph embeddings exploit the locality structure of a graph and generate embeddings for nodes which could be words in a language, products of a retail website; and the nodes are connected based on a context window. In this paper, we consider graph embeddings with an error-free associative learning update rule, which models the embedding vector of node as a non-convex Gaussian mixture of the embeddings of the nodes in its immediate vicinity with some constant variance that is reduced as iterations progress. It is very easy to parallelize our algorithm without any form of shared memory, which makes it possible to use it on very large graphs with a much higher dimensionality of the embeddings. We study the efficacy of proposed method on several benchmark data sets and favorably compare with state of the art methods. Further, proposed method is applied to generate relevant recommendations for a large retailer.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.