Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Edge Representations via Low-Rank Asymmetric Projections (1705.05615v4)

Published 16 May 2017 in cs.LG, cs.SI, and stat.ML

Abstract: We propose a new method for embedding graphs while preserving directed edge information. Learning such continuous-space vector representations (or embeddings) of nodes in a graph is an important first step for using network information (from social networks, user-item graphs, knowledge bases, etc.) in many machine learning tasks. Unlike previous work, we (1) explicitly model an edge as a function of node embeddings, and we (2) propose a novel objective, the "graph likelihood", which contrasts information from sampled random walks with non-existent edges. Individually, both of these contributions improve the learned representations, especially when there are memory constraints on the total size of the embeddings. When combined, our contributions enable us to significantly improve the state-of-the-art by learning more concise representations that better preserve the graph structure. We evaluate our method on a variety of link-prediction task including social networks, collaboration networks, and protein interactions, showing that our proposed method learn representations with error reductions of up to 76% and 55%, on directed and undirected graphs. In addition, we show that the representations learned by our method are quite space efficient, producing embeddings which have higher structure-preserving accuracy but are 10 times smaller.

Citations (75)

Summary

We haven't generated a summary for this paper yet.