Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Algorithms and Complexity for Functions on General Domains (1908.05943v2)

Published 16 Aug 2019 in math.NA, cs.CC, and cs.NA

Abstract: Error bounds and complexity bounds in numerical analysis and information-based complexity are often proved for functions that are defined on very simple domains, such as a cube, a torus, or a sphere. We study optimal error bounds for the approximation or integration of functions defined on $D_d \subset Rd$ and only assume that $D_d$ is a bounded Lipschitz domain. Some results are even more general. We study three different concepts to measure the complexity: order of convergence, asymptotic constant, and explicit uniform bounds, i.e., bounds that hold for all $n$ (number of pieces of information) and all (normalized) domains. It is known for many problems that the order of convergence of optimal algorithms does not depend on the domain $D_d \subset Rd$. We present examples for which the following statements are true: 1) Also the asymptotic constant does not depend on the shape of $D_d$ or the imposed boundary values, it only depends on the volume of the domain. 2) There are explicit and uniform lower (or upper, respectively) bounds for the error that are only slightly smaller (or larger, respectively) than the asymptotic error bound.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.