Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Error Guarantees for Least Squares Approximation with Noisy Samples in Domain Adaptation (2204.04436v3)

Published 9 Apr 2022 in math.NA and cs.NA

Abstract: Given $n$ samples of a function $f\colon D\to\mathbb C$ in random points drawn with respect to a measure $\varrho_S$ we develop theoretical analysis of the $L_2(D, \varrho_T)$-approximation error. For a parituclar choice of $\varrho_S$ depending on $\varrho_T$, it is known that the weighted least squares method from finite dimensional function spaces $V_m$, $\dim(V_m) = m < \infty$ has the same error as the best approximation in $V_m$ up to a multiplicative constant when given exact samples with logarithmic oversampling. If the source measure $\varrho_S$ and the target measure $\varrho_T$ differ we are in the domain adaptation setting, a subfield of transfer learning. We model the resulting deterioration of the error in our bounds. Further, for noisy samples, our bounds describe the bias-variance trade off depending on the dimension $m$ of the approximation space $V_m$. All results hold with high probability. For demonstration, we consider functions defined on the $d$-dimensional cube given in unifom random samples. We analyze polynomials, the half-period cosine, and a bounded orthonormal basis of the non-periodic Sobolev space $H_{\mathrm{mix}}2$. Overcoming numerical issues of this $H_{\text{mix}}2$ basis, this gives a novel stable approximation method with quadratic error decay. Numerical experiments indicate the applicability of our results.

Citations (2)

Summary

We haven't generated a summary for this paper yet.