Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Fixation probabilities in evolutionary dynamics under weak selection (1908.03827v3)

Published 10 Aug 2019 in q-bio.PE

Abstract: In evolutionary dynamics, a key measure of a mutant trait's success is the probability that it takes over the population given some initial mutant-appearance distribution. This "fixation probability" is difficult to compute in general, as it depends on the mutation's effect on the organism as well as the population's spatial structure, mating patterns, and other factors. In this study, we consider weak selection, which means that the mutation's effect on the organism is small. We obtain a weak-selection perturbation expansion of a mutant's fixation probability, from an arbitrary initial configuration of mutant and resident types. Our results apply to a broad class of stochastic evolutionary models, in which the size and spatial structure are arbitrary (but fixed). The problem of whether selection favors a given trait is thereby reduced from exponential to polynomial complexity in the population size, when selection is weak. We conclude by applying these methods to obtain new results for evolutionary dynamics on graphs.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.