Papers
Topics
Authors
Recent
Search
2000 character limit reached

Augmented NETT Regularization of Inverse Problems

Published 8 Aug 2019 in math.NA, cs.LG, cs.NA, and math.OC | (1908.03006v3)

Abstract: We propose aNETT (augmented NETwork Tikhonov) regularization as a novel data-driven reconstruction framework for solving inverse problems. An encoder-decoder type network defines a regularizer consisting of a penalty term that enforces regularity in the encoder domain, augmented by a penalty that penalizes the distance to the data manifold. We present a rigorous convergence analysis including stability estimates and convergence rates. For that purpose, we prove the coercivity of the regularizer used without requiring explicit coercivity assumptions for the networks involved. We propose a possible realization together with a network architecture and a modular training strategy. Applications to sparse-view and low-dose CT show that aNETT achieves results comparable to state-of-the-art deep-learning-based reconstruction methods. Unlike learned iterative methods, aNETT does not require repeated application of the forward and adjoint models, which enables the use of aNETT for inverse problems with numerically expensive forward models. Furthermore, we show that aNETT trained on coarsely sampled data can leverage an increased sampling rate without the need for retraining.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.