Bayesian Structure Learning in Graphical Models using Shrinkage priors (1908.02684v1)
Abstract: We consider the problem of learning the structure of a high dimensional precision matrix under sparsity assumptions. We propose to use a shrinkage prior, called the DL-graphical prior based on the Dirichlet-Laplace prior used for the Gaussian mean problem. A posterior sampling scheme based on Gibbs sampling is also provided along with theoretical guarantees of the method by obtaining the posterior convergence rate of the precision matrix.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.