Papers
Topics
Authors
Recent
Search
2000 character limit reached

Regression-Based Bayesian Estimation and Structure Learning for Nonparanormal Graphical Models

Published 8 Dec 2018 in stat.ME | (1812.04442v2)

Abstract: A nonparanormal graphical model is a semiparametric generalization of a Gaussian graphical model for continuous variables in which it is assumed that the variables follow a Gaussian graphical model only after some unknown smooth monotone transformations. We consider a Bayesian approach to inference in a nonparanormal graphical model in which we put priors on the unknown transformations through a random series based on B-splines. We use a regression formulation to construct the likelihood through the Cholesky decomposition on the underlying precision matrix of the transformed variables and put shrinkage priors on the regression coefficients. We apply a plug-in variational Bayesian algorithm for learning the sparse precision matrix and compare the performance to a posterior Gibbs sampling scheme in a simulation study. We finally apply the proposed methods to a real data set. KEYWORDS:

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.