Papers
Topics
Authors
Recent
2000 character limit reached

Few-Shot Meta-Denoising (1908.00111v2)

Published 31 Jul 2019 in cs.CV and cs.LG

Abstract: We study the problem of few-shot learning-based denoising where the training set contains just a handful of clean and noisy samples. A solution to mitigate the small training set issue is to pre-train a denoising model with small training sets containing pairs of clean and synthesized noisy signals, produced from empirical noise priors, and fine-tune on the available small training set. While such transfer learning seems effective, it may not generalize well because of the limited amount of training data. In this work, we propose a new meta-learning training approach for few-shot learning-based denoising problems. Our model is meta-trained using known synthetic noise models, and then fine-tuned with the small training set, with the real noise, as a few-shot learning task. Meta-learning from small training sets of synthetically generated data during meta-training enables us to not only generate an infinite number of training tasks, but also train a model to learn with small training sets -- both advantages have the potential to improve the generalisation of the denoising model. Our approach is empirically shown to produce more accurate denoising results than supervised learning and transfer learning in three denoising evaluations for images and 1-D signals. Interestingly, our study provides strong indications that meta-learning has the potential to become the main learning algorithm for denoising.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.