Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 37 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 111 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 243 tok/s Pro
2000 character limit reached

Data-driven identification of dissipative linear models for nonlinear systems (1907.12640v1)

Published 29 Jul 2019 in eess.SY, cs.SY, and math.OC

Abstract: We consider the problem of identifying a dissipative linear model of an unknown nonlinear system that is known to be dissipative, from time domain input-output data. We first learn an approximate linear model of the nonlinear system using standard system identification techniques and then perturb the system matrices of the linear model to enforce dissipativity, while closely approximating the dynamical behavior of the nonlinear system. Further, we provide an analytical relationship between the size of the perturbation and the radius in which the dissipativity of the linear model guarantees local dissipativity of the unknown nonlinear system. We demonstrate the application of this identification technique to the problem of learning a dissipative model of a microgrid with high penetration of variable renewable energy sources.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run paper prompts using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.