Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Well-conditioned multiproduct Hamiltonian simulation (1907.11679v2)

Published 26 Jul 2019 in quant-ph and physics.comp-ph

Abstract: Product formula approximations of the time-evolution operator on quantum computers are of great interest due to their simplicity, and good scaling with system size by exploiting commutativity between Hamiltonian terms. However, product formulas exhibit poor scaling with the time $t$ and error $\epsilon$ of simulation as the gate cost of a single step scales exponentially with the order $m$ of accuracy. We introduce well-conditioned multiproduct formulas, which are a linear combination of product formulas, where a single step has polynomial cost $\mathcal{O}(m2\log{(m)})$ and succeeds with probability $\Omega(1/\operatorname{log}2{(m)})$. Our multiproduct formulas imply a simple and generic simulation algorithm that simultaneously exploits commutativity in arbitrary systems and has a worst-case cost $\mathcal{O}(t\log{2}{(t/\epsilon)})$ which is optimal up to poly-logarithmic factors. In contrast, prior Trotter and post-Trotter Hamiltonian simulation algorithms realize only one of these two desirable features. A key technical result of independent interest is our solution to a conditioning problem in previous multiproduct formulas that amplified numerical errors by $e{\Omega(m)}$ in the classical setting, and led to a vanishing success probability $e{-\Omega(m)}$ in the quantum setting.

Citations (41)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.