Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-product Hamiltonian simulation with explicit commutator scaling (2403.08922v1)

Published 13 Mar 2024 in quant-ph, cs.NA, and math.NA

Abstract: The well-conditioned multi-product formula (MPF), proposed by [Low, Kliuchnikov, and Wiebe, 2019], is a simple high-order time-independent Hamiltonian simulation algorithm that implements a linear combination of standard product formulas of low order. While the MPF aims to simultaneously exploit commutator scaling among Hamiltonians and achieve near-optimal time and precision dependence, its lack of a rigorous error bound on the nested commutators renders its practical advantage ambiguous. In this work, we conduct a rigorous complexity analysis of the well-conditioned MPF, demonstrating explicit commutator scaling and near-optimal time and precision dependence at the same time. Using our improved complexity analysis, we present several applications of practical interest where the MPF based on a second-order product formula can achieve a polynomial speedup in both system size and evolution time, as well as an exponential speedup in precision, compared to second-order and even higher-order product formulas. Compared to post-Trotter methods, the MPF based on a second-order product formula can achieve polynomially better scaling in system size, with only poly-logarithmic overhead in evolution time and precision.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (53)
  1. Seth Lloyd “Universal quantum simulators” In Science, 1996, pp. 1073–1078 DOI: 10.1126/science.273.5278.1073
  2. “Efficient quantum algorithms for simulating sparse Hamiltonians” In Commun. Math. Phys. 270.2, 2007, pp. 359–371 DOI: 10.1007/s00220-006-0150-x
  3. “Complexity of Implementing Trotter Steps” In PRX Quantum 4.2 American Physical Society (APS), 2023 DOI: 10.1103/prxquantum.4.020323
  4. “Toward the first quantum simulation with quantum speedup” In Proc. Nat. Acad. Sci. 115, 2018, pp. 9456–9461 DOI: 10.1073/pnas.1801723115
  5. Andrew M. Childs and Yuan Su “Nearly optimal lattice simulation by product formulas” In Phys. Rev. Lett. 123.5, 2019, pp. 050503 DOI: 10.1103/PhysRevLett.123.050503
  6. “Theory of Trotter Error with Commutator Scaling” In Phys. Rev. X 11 American Physical Society, 2021, pp. 011020 DOI: 10.1103/PhysRevX.11.011020
  7. Burak Şahinoğlu and Rolando D. Somma “Hamiltonian simulation in the low-energy subspace” In npj Quantum Information 7.1 Springer ScienceBusiness Media LLC, 2021 DOI: 10.1038/s41534-021-00451-w
  8. Yuan Su, Hsin-Yuan Huang and Earl T. Campbell “Nearly tight Trotterization of interacting electrons” In Quantum 5 Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften, 2021, pp. 495 DOI: 10.22331/q-2021-07-05-495
  9. Dong An, Di Fang and Lin Lin “Time-dependent unbounded Hamiltonian simulation with vector norm scaling” In Quantum 5 Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften, 2021, pp. 459 DOI: 10.22331/q-2021-05-26-459
  10. “Spectral Analysis of Product Formulas for Quantum Simulation”, 2021 arXiv:2102.12655 [quant-ph]
  11. “Greatly improved higher-order product formulae for quantum simulation”, 2022 arXiv:2210.15817 [quant-ph]
  12. Dominic W. Berry and Andrew M. Childs “Black-box Hamiltonian simulation and unitary implementation” In Quantum Information & Computation 12.1-2, 2012, pp. 29–62 DOI: 10.26421/QIC12.1-2
  13. Earl Campbell “Random compiler for fast Hamiltonian simulation” In Phys. Rev. Lett. 123.7, 2019, pp. 070503 DOI: 10.1103/PhysRevLett.123.070503
  14. Guang Hao Low “Hamiltonian simulation with nearly optimal dependence on spectral norm” In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, 2019, pp. 491–502 DOI: 10.1145/3313276.3316386
  15. “Quantum simulation via randomized product formulas: Low gate complexity with accuracy guarantees”, 2020 arXiv:2008.11751 [quant-ph]
  16. “Simple and high-precision Hamiltonian simulation by compensating Trotter error with linear combination of unitary operations”, 2022 arXiv:2212.04566 [quant-ph]
  17. Andrew M. Childs and Nathan Wiebe “Hamiltonian Simulation Using Linear Combinations of Unitary Operations” In Quantum Information and Computation 12 Rinton Press, 2012, pp. 901–924 DOI: 10.26421/qic12.11-12
  18. Dominic W. Berry, Richard Cleve and Sevag Gharibian “Gate-efficient discrete simulations of continuous-time quantum query algorithms” In Quantum Information and Computation 14.1-2, 2014, pp. 1–30 DOI: 10.26421/QIC14.1-2-1
  19. “Simulating Hamiltonian dynamics with a truncated Taylor series” In Phys. Rev. Lett. 114, 2015, pp. 090502 DOI: 10.1103/PhysRevLett.114.090502
  20. Dominic W. Berry, Andrew M. Childs and Robin Kothari “Hamiltonian Simulation with Nearly Optimal Dependence on all Parameters” In 2015 IEEE 56th Annual Symposium on Foundations of Computer Science IEEE, 2015 DOI: 10.1109/focs.2015.54
  21. Guang Hao Low and Isaac L. Chuang “Optimal Hamiltonian Simulation by Quantum Signal Processing” In Physical Review Letters 118.1 American Physical Society (APS), 2017 DOI: 10.1103/physrevlett.118.010501
  22. Guang Hao Low and Isaac L. Chuang “Hamiltonian Simulation by Qubitization” In Quantum 3 Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften, 2019, pp. 163 DOI: 10.22331/q-2019-07-12-163
  23. “Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics” In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC ’19 ACM, 2019 DOI: 10.1145/3313276.3316366
  24. Andrew M. Childs, Aaron Ostrander and Yuan Su “Faster quantum simulation by randomization” In Quantum 3, 2019, pp. 182 DOI: 10.22331/q-2019-09-02-182
  25. “Exponential improvement in precision for simulating sparse Hamiltonians” In Proceedings of the forty-sixth annual ACM symposium on Theory of computing, 2014, pp. 283–292 DOI: 10.1145/2591796.2591854
  26. “Quantum Algorithms for Simulating Nuclear Effective Field Theories”, 2023 arXiv:2312.05344 [quant-ph]
  27. Guang Hao Low, Vadym Kliuchnikov and Nathan Wiebe “Well-conditioned multiproduct Hamiltonian simulation”, 2019 arXiv:1907.11679 [quant-ph]
  28. Siu A. Chin “Multi-product splitting and Runge-Kutta-Nyström integrators” In Celestial Mechanics and Dynamical Astronomy 106 Springer, 2010, pp. 391–406 DOI: https://doi.org/10.1007/s10569-010-9255-9
  29. Guang Hao Low and Nathan Wiebe “Hamiltonian Simulation in the Interaction Picture”, 2019 arXiv:1805.00675 [quant-ph]
  30. “Locality and Digital Quantum Simulation of Power-Law Interactions” In Physical Review X 9.3 American Physical Society (APS), 2019 DOI: 10.1103/physrevx.9.031006
  31. Ana Arnal, Fernando Casas and Cristina Chiralt “A note on the Baker–Campbell–Hausdorff series in terms of right-nested commutators”, 2020 arXiv:2006.15869 [math-ph]
  32. “Structure-preserving numerical schemes for Lindblad equations”, 2021 arXiv:2103.01194 [math.NA]
  33. “Simulating Markovian open quantum systems using higher-order series expansion”, 2023 arXiv:2212.02051 [quant-ph]
  34. Gumaro Rendon, Jacob Watkins and Nathan Wiebe “Improved Accuracy for Trotter Simulations Using Chebyshev Interpolation” In Quantum 8 Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften, 2024, pp. 1266 DOI: 10.22331/q-2024-02-26-1266
  35. James D. Watson and Jacob Watkins “Nearly Optimal Computation of Time-Evolved Expectation Values using Trotterization with Richardson Extrapolation” In preparation
  36. “Mitigating algorithmic errors in a Hamiltonian simulation” In Phys. Rev. A 99 American Physical Society, 2019, pp. 012334 DOI: 10.1103/PhysRevA.99.012334
  37. “Randomizing multi-product formulas for Hamiltonian simulation” In Quantum 6 Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften, 2022, pp. 806 DOI: 10.22331/q-2022-09-19-806
  38. “Heisenberg-Limited Ground-State Energy Estimation for Early Fault-Tolerant Quantum Computers” In PRX Quantum 3 American Physical Society, 2022, pp. 010318 DOI: 10.1103/PRXQuantum.3.010318
  39. Kianna Wan, Mario Berta and Earl T. Campbell “Randomized Quantum Algorithm for Statistical Phase Estimation” In Phys. Rev. Lett. 129 American Physical Society, 2022, pp. 030503 DOI: 10.1103/PhysRevLett.129.030503
  40. Samson Wang, Sam McArdle and Mario Berta “Qubit-Efficient Randomized Quantum Algorithms for Linear Algebra”, 2023 arXiv:2302.01873 [quant-ph]
  41. Dong An, Jin-Peng Liu and Lin Lin “Linear Combination of Hamiltonian Simulation for Nonunitary Dynamics with Optimal State Preparation Cost” In Physical Review Letters 131.15 American Physical Society (APS), 2023 DOI: 10.1103/physrevlett.131.150603
  42. Dong An, Andrew M. Childs and Lin Lin “Quantum algorithm for linear non-unitary dynamics with near-optimal dependence on all parameters”, 2023 arXiv:2312.03916 [quant-ph]
  43. Shantanav Chakraborty “Implementing Linear Combination of Unitaries on Intermediate-term Quantum Computers”, 2023 arXiv:2302.13555 [quant-ph]
  44. “Well-conditioned multi-product formulas for hardware-friendly Hamiltonian simulation” In Quantum 7 Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften, 2023, pp. 1067 DOI: 10.22331/q-2023-07-25-1067
  45. “Time-dependent Hamiltonian Simulation Using Discrete Clock Constructions”, 2022 arXiv:2203.11353 [quant-ph]
  46. Sergiy Zhuk, Niall Robertson and Sergey Bravyi “Trotter error bounds and dynamic multi-product formulas for Hamiltonian simulation”, 2024 arXiv:2306.12569 [quant-ph]
  47. “Error bounds for exponential operator splittings” In BIT 40.4, 2000, pp. 735–744 DOI: 10.1023/A:1022396519656
  48. “Hamiltonian Simulation with Random Inputs” In Physical Review Letters 129.27 American Physical Society (APS), 2022 DOI: 10.1103/physrevlett.129.270502
  49. Chi-Fang Chen and Fernando G.S.L. Brandão “Average-case Speedup for Product Formulas”, 2023 arXiv:2111.05324 [quant-ph]
  50. “State-dependent Trotter limits and their approximations” In Physical Review A 107.4 American Physical Society (APS), 2023 DOI: 10.1103/physreva.107.l040201
  51. “Strong Error Bounds for Trotter & Strang-Splittings and Their Implications for Quantum Chemistry”, 2023 arXiv:2312.08044 [quant-ph]
  52. Sergio Blanes, Fernando Casas and Javier Ros “Improved high order integrators based on the Magnus expansion” In BIT Numerical Mathematics 40.3 Springer, 2000, pp. 434–450 DOI: https://doi.org/10.1023/A:1022311628317
  53. Edgar M.E. Wermuth “A Remark on Commuting Operator Exponentials” In Proceedings of the American Mathematical Society 125.6 American Mathematical Society, 1997, pp. 1685–1688 URL: http://www.jstor.org/stable/2162208
Citations (5)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com