Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 25 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 134 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Variance Reduction in Actor Critic Methods (ACM) (1907.09765v1)

Published 23 Jul 2019 in cs.LG and stat.ML

Abstract: After presenting Actor Critic Methods (ACM), we show ACM are control variate estimators. Using the projection theorem, we prove that the Q and Advantage Actor Critic (A2C) methods are optimal in the sense of the $L2$ norm for the control variate estimators spanned by functions conditioned by the current state and action. This straightforward application of Pythagoras theorem provides a theoretical justification of the strong performance of QAC and AAC most often referred to as A2C methods in deep policy gradient methods. This enables us to derive a new formulation for Advantage Actor Critic methods that has lower variance and improves the traditional A2C method.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.