Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
52 tokens/sec
GPT-5 Medium
31 tokens/sec
GPT-5 High Premium
22 tokens/sec
GPT-4o
100 tokens/sec
DeepSeek R1 via Azure Premium
98 tokens/sec
GPT OSS 120B via Groq Premium
436 tokens/sec
Kimi K2 via Groq Premium
209 tokens/sec
2000 character limit reached

Orometric Methods in Bounded Metric Data (1907.09239v1)

Published 22 Jul 2019 in cs.AI, cs.LG, and stat.ML

Abstract: A large amount of data accommodated in knowledge graphs (KG) is actually metric. For example, the Wikidata KG contains a plenitude of metric facts about geographic entities like cities, chemical compounds or celestial objects. In this paper, we propose a novel approach that transfers orometric (topographic) measures to bounded metric spaces. While these methods were originally designed to identify relevant mountain peaks on the surface of the earth, we demonstrate a notion to use them for metric data sets in general. Notably, metric sets of items inclosed in knowledge graphs. Based on this we present a method for identifying outstanding items using the transferred valuations functions 'isolation' and 'prominence'. Building up on this we imagine an item recommendation process. To demonstrate the relevance of the novel valuations for such processes we use item sets from the Wikidata knowledge graph. We then evaluate the usefulness of 'isolation' and 'prominence' empirically in a supervised machine learning setting. In particular, we find structurally relevant items in the geographic population distributions of Germany and France.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.