Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MintNet: Building Invertible Neural Networks with Masked Convolutions (1907.07945v2)

Published 18 Jul 2019 in cs.LG, cs.CV, and stat.ML

Abstract: We propose a new way of constructing invertible neural networks by combining simple building blocks with a novel set of composition rules. This leads to a rich set of invertible architectures, including those similar to ResNets. Inversion is achieved with a locally convergent iterative procedure that is parallelizable and very fast in practice. Additionally, the determinant of the Jacobian can be computed analytically and efficiently, enabling their generative use as flow models. To demonstrate their flexibility, we show that our invertible neural networks are competitive with ResNets on MNIST and CIFAR-10 classification. When trained as generative models, our invertible networks achieve competitive likelihoods on MNIST, CIFAR-10 and ImageNet 32x32, with bits per dimension of 0.98, 3.32 and 4.06 respectively.

Citations (66)

Summary

We haven't generated a summary for this paper yet.