Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Testing for Unobserved Heterogeneity via k-means Clustering (1907.07582v1)

Published 17 Jul 2019 in econ.EM

Abstract: Clustering methods such as k-means have found widespread use in a variety of applications. This paper proposes a formal testing procedure to determine whether a null hypothesis of a single cluster, indicating homogeneity of the data, can be rejected in favor of multiple clusters. The test is simple to implement, valid under relatively mild conditions (including non-normality, and heterogeneity of the data in aspects beyond those in the clustering analysis), and applicable in a range of contexts (including clustering when the time series dimension is small, or clustering on parameters other than the mean). We verify that the test has good size control in finite samples, and we illustrate the test in applications to clustering vehicle manufacturers and U.S. mutual funds.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.