Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

The Role of Local Intrinsic Dimensionality in Benchmarking Nearest Neighbor Search (1907.07387v1)

Published 17 Jul 2019 in cs.IR and cs.DB

Abstract: This paper reconsiders common benchmarking approaches to nearest neighbor search. It is shown that the concept of local intrinsic dimensionality (LID) allows to choose query sets of a wide range of difficulty for real-world datasets. Moreover, the effect of different LID distributions on the running time performance of implementations is empirically studied. To this end, different visualization concepts are introduced that allow to get a more fine-grained overview of the inner workings of nearest neighbor search principles. The paper closes with remarks about the diversity of datasets commonly used for nearest neighbor search benchmarking. It is shown that such real-world datasets are not diverse: results on a single dataset predict results on all other datasets well.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.