Papers
Topics
Authors
Recent
2000 character limit reached

Efficient Approximate Nearest Neighbor Search for Multiple Weighted $l_{p\leq2}$ Distance Functions

Published 24 Nov 2020 in cs.DB and cs.DS | (2011.11907v1)

Abstract: Nearest neighbor search is fundamental to a wide range of applications. Since the exact nearest neighbor search suffers from the "curse of dimensionality", approximate approaches, such as Locality-Sensitive Hashing (LSH), are widely used to trade a little query accuracy for a much higher query efficiency. In many scenarios, it is necessary to perform nearest neighbor search under multiple weighted distance functions in high-dimensional spaces. This paper considers the important problem of supporting efficient approximate nearest neighbor search for multiple weighted distance functions in high-dimensional spaces. To the best of our knowledge, prior work can only solve the problem for the $l_2$ distance. However, numerous studies have shown that the $l_p$ distance with $p\in(0,2)$ could be more effective than the $l_2$ distance in high-dimensional spaces. We propose a novel method, WLSH, to address the problem for the $l_p$ distance for $p\in(0,2]$. WLSH takes the LSH approach and can theoretically guarantee both the efficiency of processing queries and the accuracy of query results while minimizing the required total number of hash tables. We conduct extensive experiments on synthetic and real data sets, and the results show that WLSH achieves high performance in terms of query efficiency, query accuracy and space consumption.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.