Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 421 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Ordinal sums of triangular norms on a bounded lattice (1907.06638v2)

Published 15 Jul 2019 in math.RA and math.LO

Abstract: The ordinal sum construction provides a very effective way to generate a new triangular norm on the real unit interval from existing ones. One of the most prominent theorems concerning the ordinal sum of triangular norms on the real unit interval states that a triangular norm is continuous if and only if it is uniquely representable as an ordinal sum of continuous Archimedean triangular norms. However, the ordinal sum of triangular norms on subintervals of a bounded lattice is not always a triangular norm (even if only one summand is involved), if one just extends the ordinal sum construction to a bounded lattice in a na\"{\i}ve way. In the present paper, appropriately dealing with those elements that are incomparable with the endpoints of the given subintervals, we propose an alternative definition of ordinal sum of countably many (finite or countably infinite) triangular norms on subintervals of a complete lattice, where the endpoints of the subintervals constitute a chain. The completeness requirement for the lattice is not needed when considering finitely many triangular norms. The newly proposed ordinal sum is shown to be always a triangular norm. Several illustrative examples are given.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube