Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

General Board Game Playing for Education and Research in Generic AI Game Learning (1907.06508v1)

Published 11 Jul 2019 in cs.AI, cs.LG, and stat.ML

Abstract: We present a new general board game (GBG) playing and learning framework. GBG defines the common interfaces for board games, game states and their AI agents. It allows one to run competitions of different agents on different games. It standardizes those parts of board game playing and learning that otherwise would be tedious and repetitive parts in coding. GBG is suitable for arbitrary 1-, 2-, ..., N-player board games. It makes a generic TD($\lambda$)-n-tuple agent for the first time available to arbitrary games. On various games, TD($\lambda$)-n-tuple is found to be superior to other generic agents like MCTS. GBG aims at the educational perspective, where it helps students to start faster in the area of game learning. GBG aims as well at the research perspective by collecting a growing set of games and AI agents to assess their strengths and generalization capabilities in meaningful competitions. Initial successful educational and research results are reported.

Citations (25)

Summary

We haven't generated a summary for this paper yet.