Papers
Topics
Authors
Recent
2000 character limit reached

Image Super-Resolution Using Attention Based DenseNet with Residual Deconvolution (1907.05282v1)

Published 3 Jul 2019 in cs.CV, cs.LG, eess.IV, and stat.ML

Abstract: Image super-resolution is a challenging task and has attracted increasing attention in research and industrial communities. In this paper, we propose a novel end-to-end Attention-based DenseNet with Residual Deconvolution named as ADRD. In our ADRD, a weighted dense block, in which the current layer receives weighted features from all previous levels, is proposed to capture valuable features rely in dense layers adaptively. And a novel spatial attention module is presented to generate a group of attentive maps for emphasizing informative regions. In addition, we design an innovative strategy to upsample residual information via the deconvolution layer, so that the high-frequency details can be accurately upsampled. Extensive experiments conducted on publicly available datasets demonstrate the promising performance of the proposed ADRD against the state-of-the-arts, both quantitatively and qualitatively.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.