Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pyramidal Dense Attention Networks for Lightweight Image Super-Resolution (2106.06996v1)

Published 13 Jun 2021 in eess.IV and cs.CV

Abstract: Recently, deep convolutional neural network methods have achieved an excellent performance in image superresolution (SR), but they can not be easily applied to embedded devices due to large memory cost. To solve this problem, we propose a pyramidal dense attention network (PDAN) for lightweight image super-resolution in this paper. In our method, the proposed pyramidal dense learning can gradually increase the width of the densely connected layer inside a pyramidal dense block to extract deep features efficiently. Meanwhile, the adaptive group convolution that the number of groups grows linearly with dense convolutional layers is introduced to relieve the parameter explosion. Besides, we also present a novel joint attention to capture cross-dimension interaction between the spatial dimensions and channel dimension in an efficient way for providing rich discriminative feature representations. Extensive experimental results show that our method achieves superior performance in comparison with the state-of-the-art lightweight SR methods.

Citations (3)

Summary

We haven't generated a summary for this paper yet.