Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Finite Regret and Cycles with Fixed Step-Size via Alternating Gradient Descent-Ascent (1907.04392v1)

Published 9 Jul 2019 in cs.GT, math.DS, and math.OC

Abstract: Gradient descent is arguably one of the most popular online optimization methods with a wide array of applications. However, the standard implementation where agents simultaneously update their strategies yields several undesirable properties; strategies diverge away from equilibrium and regret grows over time. In this paper, we eliminate these negative properties by introducing a different implementation to obtain finite regret via arbitrary fixed step-size. We obtain this surprising property by having agents take turns when updating their strategies. In this setting, we show that an agent that uses gradient descent obtains bounded regret -- regardless of how their opponent updates their strategies. Furthermore, we show that in adversarial settings that agents' strategies are bounded and cycle when both are using the alternating gradient descent algorithm.

Citations (60)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.