Papers
Topics
Authors
Recent
2000 character limit reached

A continuous-time approach to online optimization

Published 27 Jan 2014 in math.OC, cs.LG, and stat.ML | (1401.6956v2)

Abstract: We consider a family of learning strategies for online optimization problems that evolve in continuous time and we show that they lead to no regret. From a more traditional, discrete-time viewpoint, this continuous-time approach allows us to derive the no-regret properties of a large class of discrete-time algorithms including as special cases the exponential weight algorithm, online mirror descent, smooth fictitious play and vanishingly smooth fictitious play. In so doing, we obtain a unified view of many classical regret bounds, and we show that they can be decomposed into a term stemming from continuous-time considerations and a term which measures the disparity between discrete and continuous time. As a result, we obtain a general class of infinite horizon learning strategies that guarantee an $\mathcal{O}(n{-1/2})$ regret bound without having to resort to a doubling trick.

Citations (49)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.