Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

PDE/PDF-informed adaptive sampling for efficient non-intrusive surrogate modelling (1907.04022v1)

Published 9 Jul 2019 in math.NA and cs.NA

Abstract: A novel refinement measure for non-intrusive surrogate modelling of partial differential equations (PDEs) with uncertain parameters is proposed. Our approach uses an empirical interpolation procedure, where the proposed refinement measure is based on a PDE residual and probability density function of the uncertain parameters, and excludes parts of the PDE solution that are not used to compute the quantity of interest. The PDE residual used in the refinement measure is computed by using all the partial derivatives that enter the PDE separately. The proposed refinement measure is suited for efficient parametric surrogate construction when the underlying PDE is known, even when the parameter space is non-hypercube, and has no restrictions on the type of the discretisation method. Therefore, we are not restricted to conventional discretisation techniques, e.g., finite elements and finite volumes, and the proposed method is shown to be effective when used in combination with recently introduced neural network PDE solvers. We present several numerical examples with increasing complexity that demonstrate accuracy, efficiency and generality of the method.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.