Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AMD Severity Prediction And Explainability Using Image Registration And Deep Embedded Clustering (1907.03075v1)

Published 6 Jul 2019 in cs.CV and eess.IV

Abstract: We propose a method to predict severity of age related macular degeneration (AMD) from input optical coherence tomography (OCT) images. Although there is no standard clinical severity scale for AMD, we leverage deep learning (DL) based image registration and clustering methods to identify diseased cases and predict their severity. Experiments demonstrate our approach's disease classification performance matches state of the art methods. The predicted disease severity performs well on previously unseen data. Registration output provides better explainability than class activation maps regarding label and severity decisions

Citations (15)

Summary

We haven't generated a summary for this paper yet.