Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 119 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 423 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Equivalent Circuit Model Recognition of Electrochemical Impedance Spectroscopy via Machine Learning (1907.01802v1)

Published 3 Jul 2019 in physics.data-an, physics.app-ph, and physics.comp-ph

Abstract: Electrochemical impedance spectroscopy (EIS) is an effective method for studying the electrochemical systems. The interpretation of EIS is the biggest challenge in this technology, which requires reasonable modeling. However, the modeling of EIS is of great subjectivity, meaning that there may be several models to fit the same set of data. In order to overcome the uncertainty and triviality of human analysis, this research uses machine learning to carry out EIS pattern recognition. Raw EIS data and their equivalent circuit models were collected from the literature, and the support vector machine (SVM) was used to analyze these data. As the result, we addresses the classification of EIS and recognizing their equivalent circuit models with accuracies of up to 78%. This study demonstrates the great potential of machine learning in electrochemical researches.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.