Papers
Topics
Authors
Recent
2000 character limit reached

Causal models on probability spaces (1907.01672v1)

Published 2 Jul 2019 in math.ST and stat.TH

Abstract: We describe the interface between measure theoretic probability and causal inference by constructing causal models on probability spaces within the potential outcomes framework. We find that measure theory provides a precise and instructive language for causality and that consideration of the probability spaces underlying causal models offers clarity into central concepts of causal inference. By closely studying simple, instructive examples, we demonstrate insights into causal effects, causal interactions, matching procedures, and randomization. Additionally, we introduce a simple technique for visualizing causal models on probability spaces that is useful both for generating examples and developing causal intuition. Finally, we provide an axiomatic framework for causality and make initial steps towards a formal theory of general causal models.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com