Papers
Topics
Authors
Recent
2000 character limit reached

Tight Sensitivity Bounds For Smaller Coresets

Published 2 Jul 2019 in cs.LG and stat.ML | (1907.01433v1)

Abstract: An $\varepsilon$-coreset for Least-Mean-Squares (LMS) of a matrix $A\in{\mathbb{R}}{n\times d}$ is a small weighted subset of its rows that approximates the sum of squared distances from its rows to every affine $k$-dimensional subspace of ${\mathbb{R}}d$, up to a factor of $1\pm\varepsilon$. Such coresets are useful for hyper-parameter tuning and solving many least-mean-squares problems such as low-rank approximation ($k$-SVD), $k$-PCA, Lassso/Ridge/Linear regression and many more. Coresets are also useful for handling streaming, dynamic and distributed big data in parallel. With high probability, non-uniform sampling based on upper bounds on what is known as importance or sensitivity of each row in $A$ yields a coreset. The size of the (sampled) coreset is then near-linear in the total sum of these sensitivity bounds. We provide algorithms that compute provably \emph{tight} bounds for the sensitivity of each input row. It is based on two ingredients: (i) iterative algorithm that computes the exact sensitivity of each point up to arbitrary small precision for (non-affine) $k$-subspaces, and (ii) a general reduction of independent interest from computing sensitivity for the family of affine $k$-subspaces in ${\mathbb{R}}d$ to (non-affine) $(k+1)$- subspaces in ${\mathbb{R}}{d+1}$. Experimental results on real-world datasets, including the English Wikipedia documents-term matrix, show that our bounds provide significantly smaller and data-dependent coresets also in practice. Full open source is also provided.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.