Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Cosine similarity-based adversarial process (1907.00542v1)

Published 1 Jul 2019 in cs.LG, eess.AS, eess.IV, and stat.ML

Abstract: An adversarial process between two deep neural networks is a promising approach to train a robust model. In this paper, we propose an adversarial process using cosine similarity, whereas conventional adversarial processes are based on inverted categorical cross entropy (CCE). When used for training an identification model, the adversarial process induces the competition of two discriminative models; one for a primary task such as speaker identification or image recognition, the other one for a subsidiary task such as channel identification or domain identification. In particular, the adversarial process degrades the performance of the subsidiary model by eliminating the subsidiary information in the input which, in assumption, may degrade the performance of the primary model. The conventional adversarial processes maximize the CCE of the subsidiary model to degrade the performance. We have studied a framework for training robust discriminative models by eliminating channel or domain information (subsidiary information) by applying such an adversarial process. However, we found through experiments that using the process of maximizing the CCE does not guarantee the performance degradation of the subsidiary model. In the proposed adversarial process using cosine similarity, on the contrary, the performance of the subsidiary model can be degraded more efficiently by searching feature space orthogonal to the subsidiary model. The experiments on speaker identification and image recognition show that we found features that make the outputs of the subsidiary models independent of the input, and the performances of the primary models are improved.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.