Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stylized Adversarial Defense (2007.14672v2)

Published 29 Jul 2020 in cs.CV

Abstract: Deep Convolution Neural Networks (CNNs) can easily be fooled by subtle, imperceptible changes to the input images. To address this vulnerability, adversarial training creates perturbation patterns and includes them in the training set to robustify the model. In contrast to existing adversarial training methods that only use class-boundary information (e.g., using a cross-entropy loss), we propose to exploit additional information from the feature space to craft stronger adversaries that are in turn used to learn a robust model. Specifically, we use the style and content information of the target sample from another class, alongside its class-boundary information to create adversarial perturbations. We apply our proposed multi-task objective in a deeply supervised manner, extracting multi-scale feature knowledge to create maximally separating adversaries. Subsequently, we propose a max-margin adversarial training approach that minimizes the distance between source image and its adversary and maximizes the distance between the adversary and the target image. Our adversarial training approach demonstrates strong robustness compared to state-of-the-art defenses, generalizes well to naturally occurring corruptions and data distributional shifts, and retains the model accuracy on clean examples.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Muzammal Naseer (67 papers)
  2. Salman Khan (245 papers)
  3. Munawar Hayat (73 papers)
  4. Fahad Shahbaz Khan (226 papers)
  5. Fatih Porikli (141 papers)
Citations (15)

Summary

We haven't generated a summary for this paper yet.