Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Image and Video Compression through Spatial-Temporal Energy Compaction (1906.09683v2)

Published 24 Jun 2019 in eess.IV

Abstract: Compression has been an important research topic for many decades, to produce a significant impact on data transmission and storage. Recent advances have shown a great potential of learning image and video compression. Inspired from related works, in this paper, we present an image compression architecture using a convolutional autoencoder, and then generalize image compression to video compression, by adding an interpolation loop into both encoder and decoder sides. Our basic idea is to realize spatial-temporal energy compaction in learning image and video compression. Thereby, we propose to add a spatial energy compaction-based penalty into loss function, to achieve higher image compression performance. Furthermore, based on temporal energy distribution, we propose to select the number of frames in one interpolation loop, adapting to the motion characteristics of video contents. Experimental results demonstrate that our proposed image compression outperforms the latest image compression standard with MS-SSIM quality metric, and provides higher performance compared with state-of-the-art learning compression methods at high bit rates, which benefits from our spatial energy compaction approach. Meanwhile, our proposed video compression approach with temporal energy compaction can significantly outperform MPEG-4 and is competitive with commonly used H.264. Both our image and video compression can produce more visually pleasant results than traditional standards.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Zhengxue Cheng (29 papers)
  2. Heming Sun (39 papers)
  3. Masaru Takeuchi (9 papers)
  4. Jiro Katto (36 papers)
Citations (79)

Summary

We haven't generated a summary for this paper yet.