Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multitaper Spectral Analysis of Neuronal Spiking Activity Driven by Latent Stationary Processes (1906.08451v1)

Published 20 Jun 2019 in eess.SP, cs.IT, math.IT, q-bio.NC, and stat.ME

Abstract: Investigating the spectral properties of the neural covariates that underlie spiking activity is an important problem in systems neuroscience, as it allows to study the role of brain rhythms in cognitive functions. While the spectral estimation of continuous time-series is a well-established domain, computing the spectral representation of these neural covariates from spiking data sets forth various challenges due to the intrinsic non-linearities involved. In this paper, we address this problem by proposing a variant of the multitaper method specifically tailored for point process data. To this end, we construct auxiliary spiking statistics from which the eigen-spectra of the underlying latent process can be directly inferred using maximum likelihood estimation, and thereby the multitaper estimate can be efficiently computed. Comparison of our proposed technique to existing methods using simulated data reveals significant gains in terms of the bias-variance trade-off.

Citations (11)

Summary

We haven't generated a summary for this paper yet.