Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Monaural Speech Enhancement Method for Robust Small-Footprint Keyword Spotting (1906.08415v1)

Published 20 Jun 2019 in cs.SD, cs.LG, cs.MM, and eess.AS

Abstract: Robustness against noise is critical for keyword spotting (KWS) in real-world environments. To improve the robustness, a speech enhancement front-end is involved. Instead of treating the speech enhancement as a separated preprocessing before the KWS system, in this study, a pre-trained speech enhancement front-end and a convolutional neural networks (CNNs) based KWS system are concatenated, where a feature transformation block is used to transform the output from the enhancement front-end into the KWS system's input. The whole model is trained jointly, thus the linguistic and other useful information from the KWS system can be back-propagated to the enhancement front-end to improve its performance. To fit the small-footprint device, a novel convolution recurrent network is proposed, which needs fewer parameters and computation and does not degrade performance. Furthermore, by changing the input features from the power spectrogram to Mel-spectrogram, less computation and better performance are obtained. our experimental results demonstrate that the proposed method significantly improves the KWS system with respect to noise robustness.

Citations (5)

Summary

We haven't generated a summary for this paper yet.