Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SAR Image Change Detection via Spatial Metric Learning with an Improved Mahalanobis Distance (1906.07930v1)

Published 19 Jun 2019 in cs.CV and cs.LG

Abstract: The log-ratio (LR) operator has been widely employed to generate the difference image for synthetic aperture radar (SAR) image change detection. However, the difference image generated by this pixel-wise operator can be subject to SAR images speckle and unavoidable registration errors between bitemporal SAR images. In this letter, we proposed a spatial metric learning method to obtain a difference image more robust to the speckle by learning a metric from a set of constraint pairs. In the proposed method, spatial context is considered in constructing constraint pairs, each of which consists of patches in the same location of bitemporal SAR images. Then, a semi-definite positive metric matrix $\bf M$ can be obtained by the optimization with the max-margin criterion. Finally, we verify our proposed method on four challenging datasets of bitemporal SAR images. Experimental results demonstrate that the difference map obtained by our proposed method outperforms than other state-of-art methods.

Citations (13)

Summary

We haven't generated a summary for this paper yet.