Papers
Topics
Authors
Recent
Search
2000 character limit reached

Towards Compact and Robust Deep Neural Networks

Published 14 Jun 2019 in cs.LG, cs.CV, and stat.ML | (1906.06110v1)

Abstract: Deep neural networks have achieved impressive performance in many applications but their large number of parameters lead to significant computational and storage overheads. Several recent works attempt to mitigate these overheads by designing compact networks using pruning of connections. However, we observe that most of the existing strategies to design compact networks fail to preserve network robustness against adversarial examples. In this work, we rigorously study the extension of network pruning strategies to preserve both benign accuracy and robustness of a network. Starting with a formal definition of the pruning procedure, including pre-training, weights pruning, and fine-tuning, we propose a new pruning method that can create compact networks while preserving both benign accuracy and robustness. Our method is based on two main insights: (1) we ensure that the training objectives of the pre-training and fine-tuning steps match the training objective of the desired robust model (e.g., adversarial robustness/verifiable robustness), and (2) we keep the pruning strategy agnostic to pre-training and fine-tuning objectives. We evaluate our method on four different networks on the CIFAR-10 dataset and measure benign accuracy, empirical robust accuracy, and verifiable robust accuracy. We demonstrate that our pruning method can preserve on average 93\% benign accuracy, 92.5\% empirical robust accuracy, and 85.0\% verifiable robust accuracy while compressing the tested network by 10$\times$.

Citations (39)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.